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The latter implies that a general theory to treat energy markets, even if we restrict our-

selves just to particular forecasting settings, is not a realistic goal andad hocstudies have

to be done in order to obtain e�ective results.

The present work aims at addressing a “rst fundamental task in energy trading in the

Italian energy market, that is the forecast of energy load. Latter challenge is of crucial

relevance particularly from the “nancial point of view by the side of agencies that produce

and sell energy on the market under the supervision of the Italian Power Exchange (IPEX),

managed by theGestore del Mercato Elettrico(GME in Italian), which is the exchange for

electricity and natural gas spot trading in Italy. In particular IPEX comprises two spot

markets, namely theDay Ahead(in Italian: Mercato del Giorno Prima, or MGP) and the

Intra Day (in Italian: Mercato Infragiornaliero, or MI). The latter, which since the ��th of

February, ����, is divided into “ve components, or sessions, which are calledMI�, MI�,

MI�, MI�, MI� .

Because there are not any e�cient and economical sustainable ways to store electricity,

power systems need to be constantly balanced between production and consumption, see,

e.g., [	 ]. The latter implies that an accuratenext day imbalance forecasthas to be derived

if one wants to obtain pro“t as well as to avoid losses caused by wrong imbalance in sign,

whence the need to have concrete methods able to predict next days such a sign.

To the best of our knowledge, just few results have been already developed concerning

last issue, moreover most of them, if not all, do not address the Italian market, but rather

USA markets, as in the case of activities related to the California Energy Commission,

or the Germany market, particularly with respect to the recently launched plan called

Energiewendeor energy turnaround.

We therefore intend to address this crucial topic in a series of paper, where we aim at

giving a characterization as extensive as possible of the problem of energy load forecasting

within the Italian energy market framework.

The present paper is so structured as follows: in Section� we give an overview of the

Italian energy markets functioning and of its main peculiarities, addressing also the main

problem that motivates our study; in Section� we provide a quick overview of the theo-

retical foundation of the method we later exploit in our analysis; eventually, in Section	

we study the aforementioned problem with respect to a concrete real case.

2 The Italian energy markets functioning
The Italian power exchange market(IPEX) (Mercato elettrico italiano) is a free system

that allows producers and consumers to enters into hourly contracts for buying or selling

electricity. Such a market is divided into two main markets:future marketandspot mar-

ket, which are themselves divided into di�erent sessions. We would like to underline that

such a market implies a particular treatment of its “nancial basis since its nature is rather

di�erent from, e.g., the one characterising the usual derivatives/options/assets scenarios,

see, e.g., [� , 
 ], and references therein.

In the future markets(FM) participants buy and sell bilateral contracts for delivery of

energy on a speci“ed future date. In such a contracts the parties are obliged to sell and

buy the agreed amount of energy.

In the spot market(SM) any market operator has as a counterpart thetransport system

operator(TSO) (Gestore del Mercato Elettrico). Spot market is divided into theday ahead

market(mercato del giorno prima) (MGP), theintra day market (mercato infragiornaliero)
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(MI), which since February ���� is composed of “ve sessions (MI�, MI�, MI�, MI	 and

MI�), and the Mercato per il Servizio di Dispacciamento(MSD).

The day ahead market In the MGP negotiations for energy trading for any hour of the

next day take place. This market is based upon an implicit auction mechanism, each player

submits his bids composed by a quantity and a price representing the maximum price at

which he is willing to buy energy or the minimum price at which he is willing to sell energy.

At closure of each session, one for every hour of the day, all the o�ers are processed and

either accepted or refused according to theSystem Marginal Price, that is, bids, resp. asks,

are ordered from the lowest to the highest price, resp. from the highest to the lowest price,

the equilibrium price and total exchanged energy are determined by the intersection of the

two curves.

The intra day market The MI is composed of “ve sessions, namelyMI� , MI� , MI� , MI�

andMI� .MI� andMI� take place the day before the actual delivery, whereasMI� ,MI� and

MI� occur the same day of the actual delivery. In each session every operator can modify

his program of injection or withdrawal of energy. Also MI sessions follows the same exact

rules of price formation ofMGP.

The dispatching services market Dispatchingguarantees the overall equilibrium between

production and loading and thus ensures the correct functioning of the national electric

grid. In Italy the dispatching system is managed byTerna S.p.A., which is the owner of

the high voltage national transmission network.Terna, in order to guarantee the proper

functioning of the electrical network, has to deal with the congestion resolution activities

between the di�erent market areas, the creation of the reserve of energy and the real-time

balance between production and consumption.

In MSD Terna obtains the necessary reserves to the dispatching service by acting as

central counterparty in negotiations with operators enabled to the dispatching service.

In this market all accepted bids are remunerated at the price presented, according to the

paid as bid method. The o�ers of purchase in MSD are also calleddownward, meaning

that such o�ers will be accepted if it is necessary to reduce the amount of energy generated,

while o�ers to sell are calledupward.

2.1 The problem of the unbalance forecasting
As already mentioned, the continuous balance between production and consumption of

energy is a fundamental task in order to guarantee the correct functioning of the whole

electrical network. This balance is guaranteed byTerna through MSD. In order to create

the necessary energy reserves to balance the grid,Terna needs to know as precisely as

possible the production of di�erent plants.

While for traditional sources plants, such as coal, gas and other fossil fuels, is a relatively

simple task to predict the next day production, for non-programmable renewable sources

plants, such as wind and solar, this forecast is very di�cult task, with many factors a�ecting

the “nal outcome.

In order to ease the work ofTerna to balance the network, all the producers from tra-

ditional sources and programmable renewable sources, such as for instance some types

of hydroelectric energy, are required to provide toTerna the exact production plan for
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Table 1 Imbalance price settlement mechanism

Positive actor unbalance:
actor receives

Negative actor unbalance:
actor pays

Positive network unbalance min{PMGP,P
↓
MSD} min{PMGP,P

↓
MSD}

Negative network unbalance max{PMGP,P
↑
MSD} max{PMGP,P

↑
MSD}

the next day; in the event that these programs are not observed, then the actor has to

pay a penalty. Producers of non-programmable renewable sources that do not meet the

scheduled production, however, incur in penalties or rewards depending on the relative

sign between their unbalance and the unbalance of the macro-zone in which the plant is

located.

In Italy there are two di�erent macro-zones for balancing purposes: the northern macro-

zone consists of all the regions of Northern Italy, including Emilia Romagna, whereas the

southern macro-one consists of all other regions. The aggregate zonal unbalance is the

algebraic sum, changed in sign, of the amount of energy procured byTerna in MSD at a

given time in a given macro-zone. When the aggregate unbalance is positive means that

the energy produced is greater than the energy scheduled and then most of the o�ers

accepted in MSD were downward; when the aggregate unbalance is negative the opposite

happens.

A producer of non-programmable renewable sources which has produced more than

declared in an area with positive aggregate unbalance will be required to pay a penalty, as

it has helped to increase the unbalance in the area. Similar thing happens in the case in

which the actor has produced less than declared and the macro-zone has negative aggre-

gate imbalance. Conversely, if a producer is unbalanced in the opposite direction to the

macrozonal aggregate imbalance he is rewarded as he is helping to balance the market.

Table� gives reward and penalties for non-programmable renewable plants.

Energy that was scheduled the day before is paid at the price determined in MGPPMGP,

whereas unbalanced energy is paid according to Table� . Above we have de“ned byP↓
MB,

resp.P↑
MB, the average price used by Terna to decrease, resp. increase, the generation of

energy. Moreover the following relation holds:

P↓
MB ≤ PMGP ≤ P↑

MB.

3 Statistical methods
In the present section we analyse the theoretical mathematical foundation of the method

that will be later used to concrete address ourenergy balance task. In particular, in order

to make the present work as much as self-contained as possible, we provide an overview

of standard approaches that can be used in similar frameworks, referring the interested

reader to, e.g., to [� , � ] for a deeper introduction to them.

The exponential smoothing model Let us first consider the exponential smoothing (ES),
see, e.g., [–], which is mainly based on predictive procedures built starting from an
exponentially weighted average of past observations. The general model involves a state
vector yt = (lt ,bt ,st , . . . ,st…m+� ), where lt represents the level of the series, bt represents
the growth and st is the seasonal component, coupled with a state space equation of the
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form
⎧
⎨

⎩

Xt = w(yt…�) + r(Xt…�)εt ,

yt = f (yt…�) + g(Xt…�)εt ;

εt being a centred Gaussian noise with finite variation σ �
t , and for some suitable func-

tions, to be choose according to the model one wishes to fit, w, r , f and g, see, e.g., []
or also []. We remark that in what follows we will not choose a particular ES model to
be fitted to data, but rather we run a routine in order to choose the best performing ES
model.

The ARMA-ARIMA model When one concerns the study of time series, the AutoRe-
gressive Moving Average (ARMA) models play a central role because they are capable
of describe weakly stationary stochastic processes with a rather restricted set of assump-
tions, being mainly based on the use of two polynomials: the first one takes into account
the autoregressive character of the data set, while the second takes into account the mov-
ing average. It is worth to mention that such a method results as a combination of the
Moving Average method (MA) together with an AutoRegressive (AR) one. In particular,
denoting by Xt the unknown value of the series of interest at time t , which is in fact
treated as random variable, a pth order Auto Regressive method (AR(p)) is defined as
follows

Xt …
p∑

k=�

φkXt…k = εt ,

where εt is a general random noise, while the coefficients φ� , . . . ,φp are the AR (or re-
gression) coefficients. In the most simple case the noise εt is assumed to be Gaussian,
however more general type of random disturbance can be considered.
Concerning the moving average component of the ARMA model, it is defined by the
Moving Average method of order q, which will be indicated by MA(q), and it is defined
as follows

Xt = εt +
q∑

k=�

θkεt…k,

εt still being the noise, or uncertainty, affecting our observations, or elements of the
time series we are studying, which is not necessarily of Gaussian type. As before X is
the process that we would like to forecast, on the basis of previous observations, while
θ� , . . . ,θq are the moving average parameters.
Merging the methods already introduced, it is possible to define the AutoRegressive
Moving Average method of order (p,q), indicated by ARMA(p,q), and defined as fol-
lows

Xt …
p∑

k=�

φkXt…k = εt +
q∑

k=�

θkεt…k. (�)

A further step is represented by the AutoRegressive Integrated Moving Average (ARIMA)
method, which allows to take into account time series which are not of stationary type.
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In particular an ARIMA model of order (p,d,q), indicated by (ARIMA(p,d,q)) where
d is the degree of differencing, namely it represents how much the time series we are
dealing with is far from being stationary, is defined as follows

φ(B)∇dXt = θ (B)εt ,

where ∇Xt = (� …B)Xt is the lag  differencing operator, and B is the backward shift
operator defined by BnXt := Xt…n, considering the use of the following short notations

φ(B) = � …φ� B� …· · · …φpBp,

θ (B) = � + θ� B� + · · · + θqBq.

We refer the interested reader to, e.g., [], Section ., for further details.
The ARMA-GARCH model The ARMA-GARCH model models the mean equation via

an ARMA(p,q) model, see Eq. (), whereas the random noise components, repre-
sented by εt , are modelled with a Generalized Autoregressive Conditional Heteroskedas-
tic (GARCH), model. In particular the GARCH model of order (p,q), indicated by
(GARCH(p,q)), defines the residual εt appearing in equation () as follows

ht = εtσt ,

σ �
t = α� +

q∑

k=�

αkh�
t…k +

p∑

k=�

β �
kσ �

t…k,

for some positive coefficients αk,βk ≥ � . The latter approach allows to overcome one
of the main issue affecting the ARMA process, namely the fact that the mean equation
cannot take into account for heteroskedastic effects of the time series process, as, e.g.,
happens for the so called fat tails.

ARMA-GARCH method with exogenous variables The ARMA-GARCH models can
be enriched by considering also the role played by the so called exogenous variables.
In particular exogenous variables can be added to the ARMA component, as well as to
the GARCH model one. However, for the sake of brevity, here we only consider the case
of exogenous variables added to the ARMA process, the case related to the GARCH one
being analogous.
We thus define the AutoRegressive Moving Average method with exogenous variables
(ARMAX(p,q,r� , . . . ,rn)), as follows

φ(B)Xt = θ (B)εt +
n∑

k=�

ψk(B)Yk
t ,

where ri ’s are the orders of the exogenous variables Y� , . . . ,Yn and

ψk(B) = ψk
� + ψk

� B+ · · · + ψk
ri
Bri ,

and we refer to [], Section .., for a detailed introduction to modelling with exoge-
nous variables.
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4 Estimating the model
In what follows we will apply the methods introduced in Section� to analyse the net hourly

energy load imbalance in the Italian northern macro-zone, where the positive, resp. neg-

ative, sign is to be intended as explained in Section� . We recall that the Italian northern

macro-zone is composed by all regions from northern Italy, including Emilia Romagna.

First we study the hourly time series of energy load, applying time series method recalled

in Section� to outline which of them better perform according to a concrete criterion that

will be speci“ed later on. Then, we will consider the task of forecasting thenext dayimbal-

ance sign. We would like to underline that we are mainly interested not in the prediction

of the exact amount of the zonal imbalance, but rather in predicting the right sign of im-

balance, since the latter is the main factor a�ecting the energy trading in Italy, nowadays.

The latter characteristic is due to the imbalance mechanics on which the MSD is based,

see Table� and Section�.� , for details. Last but not least, the forecast of thenext day

imbalance signfor the Italian energy market constitutes the main novelty of the present

work.

As often have been pointed out in literature, see, e.g., [� ], instead of considering the

hourly times, it is more e�ective to deal with �	 di�erent daily time series, one for every

single hour of the day. In fact, the hourly time series results to be highly intractable from a

statistical point of view, with several trend and seasonal components, as it is clearly shown

in Figure� , where theauto correlation function, Figure� (b), and thepartial auto correla-

tion function, Figure� (c), exhibit a clear daily component with a signi“cance correlation

at lag �	.

Therefore, motivated by previous facts, we perform our study on the time series of the

e�ective unbalance at a given hour. In particular, in what follows we focus our attention on

one of the most challenging hour of the day, namely we consider the time series at � p.m.

Nevertheless, it is worth to mention that di�erent hours, albeit being characterized by

their speci“c peculiarities, can be analogously treated exploiting our approach. It is worth

to mention that our analysis will be performed with respect to di�erent time windows,

showing how changing the number of days taken into consideration may slightly a�ect

the overall “t of the model. We stress that the problem of choosing the right time window

is really a hard task in energy markets, mainly because it is a�ected by a large number of

seasonal components. The latter implies that, going too far in the past, may only lead to an

increase of the overall instability of the model. Furthermore, since the national regulation

of the Italian energy market has been changed several times during last years, one has to

take past values with particular care on the chosen period in order to avoid to treat non

homogeneous numbers resulting as the output of di�erent regulatory settings.

On the basis of previous considerations, our study is based on the time series of the net

energy imbalance in the northern macro-zone, that starts from the �st of January ����,

see Figure� , resulting in �� daily observations.

A “rst choice on the best method to use can be done looking at both thesample auto-

correlation function(ACF) and thepartial autocorrelation function (PACF), see Figure�

bottom panel. In fact, also taking into consideration the graphs in Figure� , the consid-

ered time series seems to be non-stationary, with clear evidences of seasonal behaviours.

Nevertheless, in what follows we will choose the best model looking at thebias-corrected
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Figure 1 Hourly energy load time series.

Akaike•s Information Criterion(AIC), de“ned as follows

AIC := …�logL +
� dn

n …d … �
,
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Figure 2 Time series h : 14 : 00.

beingd the sizeof the mode, whilelogL represents the log-likelihood function de“ned as

logL = …
n
�

log
(
� πσ � ) …

�
�

log
 …
�

� σ �
LT 
…�L,

beingL = (L� , . . . ,Ln)T the observations of a stationary time series withLT its transpose,

σ � the noisy variance and
 is the auto-covariance matrix ofL, see, e.g., [� ], p.�	. We

stress that a lower AIC means a better “t. Other widely used criterion are theAkaike•s

Final Prediction Error(FPE) and theBayesian Information Criterion(BIC), sometimes also

referred to asSchwarz Information Criterion(SIC), we refer the interested reader to such

criterion to [ � ], Section �.	.
. All of aforementioned criteria provide insights about the

goodness of statistical “t, hence giving precious informations on how to select the most

performing model. In particular they are characterized by the peculiarity of penalizing
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Figure 3 ACF function of the load time series
against temperature.

arti“cial over“t which is caused, in most of the cases, by an excessive complexity, e.g., too

many parameters have been considered, with respect to the chosen model.

The model selection procedure consists of several steps. Concerning the ES model, af-

ter having chosen a time window, we estimate it considering the associated AIC value.

Afterwards,ARIMA(p,d,q) processes are calibrated to the stochastic component for dif-

ferent values of parametersp andq, then the AIC criteria is used to choose the best (p,q)

combination. Analogously, we proceed for thesimple ARMA-GARCHmodel, resp. for

the ARMA-GARCHenriched by exogenous variables. As regard the exogenous variables,

several choices can be made. As an example, Figure� enlightens that the considered time

series exhibits a weekly seasonality, so that the “rst exogenous variable we take into ac-

count is the day of the week. The second exogenous parameter that has to be taken into

account is temperature. In particular Figure� represents the ACF of the net load time

series plotted against temperature, there is a clear evidence of a positive correlation be-

tween energy load and the temperature values, see also, e.g., [� ], Section �.�.�, for a deeper

treatment of the topic.

Once we have calibrated all the aforementioned models, we exploit the associated AIC

values to chose the one that has better performed. Eventually, the same procedure is re-

peated over di�erent time windows. It is worth to mention, as brie”y said above, that

choosing the right time windows to be used to perform the statistical analysis turns to

be a rather di�cult task. In the framework of energy market, latter problem is even more

complicated, playing, at the same time, a more relevant role. In fact, energy related time

series often exhibit di�erent seasonal components, being the energy load correlated to

the day of the week as much as the season on is considering. Besides, it can happen that

some exogenous variables may a�ect the data only in a given season, being irrelevant dur-

ing the others. Concerning the latter issues, we refer the interested reader to [� ], Sec-

tion �.�.	.

We list the resulting AIC values for all the exploited models, with respect to particularly

relevant time windows.



Di Persio et al. Journal of Mathematics in Industry  (2017) 7:5 Page 11 of 15

Table 2 Resulting AIC values for considered models over different time windows

ES ARIMA ARIMAX ARMA-GARCH ARMAX-GARCH

2,229.917 1,992.997 1,985.405 16.417 16.405
2,239.055 2,002.135 1,998.176 16.535 16.504
2,237.519 2,000.600 1,998.778 16.525 16.375
2,238.399 2,001.083 1,999.042 16.537 16.445
2,238.138 2,001.106 1,999.415 16.556 16.516

A “rst immediate consequence that can be drawn from Table� is that the ARMA(X)-

GARCH performs considerably better than the other models, with a slightly increase in

obtained accuracy when the exogenous variables are taken into account. Nevertheless, Ta-

ble � also implies that the main improvement is given by considering the GARCH model,

rather than the predictor variables. In fact, it can be seen that also the ARIMAX model

performs better than the ARIMA one, but its “t is considerably worst than the ARMA-

GARCH.

A further comparison between theARMA-GARCH type models with and without ex-

ogenous variables is shown in Figure	 . In fact it can be seen how both the empirical dis-

tribution of standardized residuals, Figure	 top panel, and the  % con“dence interval,

Figure	 bottom panel, for the ARMA-GARCH and the ARMAX-GARCH model behave

similarly.

Finally, in Table� ,we have reported the AIC criterion for each model, whit respect to

some relevant hours of the day, such as the net load ath : �� : ��, h : �� : ��, h : �� : ��

andh : �� : ��. An immediate glimpse at Table � shows how the same conclusions drawn

above can be done also if one consider di�erent hourly time series.

4.1 On the forecast for the next day unbalance
As mentioned at the beginning of the current Section, we are mainly interested in the

forecast of the next day energy load, with particular attention to the overall sign of the im-

balance in the macro-zone, rather than to what concerns the exact quantity of imbalanced

energy. Moreover, our main goal is to obtain accurate short time previsions of the right

sign of next days imbalance. The latter is due to the speci“c mechanism behind the trad-

ing strategies explained in Section�.� , see in particular Table� . For a general treatment

of forecasting within di�erent energy markets and/or with respect to di�erent scopes, we

refer to, e.g., [� , �� …�� ], while we refer to, e.g., [�� , �� ] for the study of the long-time hori-

zon forecast and to [�	 ], and references therein, for the treatment of related computational

issues.

In particular, our forecasting procedure is structured as follows: we chose an appro-

priate positive threshold and, if the forecasted value is in absolute value higher than the

threshold, then we enter the market according to the predicted unbalance sign, otherwise,

namely, as it is most likely to happen, the outcome is too close to zero implying a high

probability to unbalance in the wrong direction, we do not enter the market. We under-

line that the aforementioned threshold can be chosen according to di�erent parameters,

for instance we considered the estimated volatility of the time series.

In Figure � we show the next day predictions obtained exploiting di�erent models, but

with a “xed time window, for the time series ath : �	 : ��. The top panel in Figure � repre-

sents the worst performing methods according to AIC value, that is ES model, Figure� (a),
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Figure 4 Empirical distribution of standardized residuals (top panels) and 99% VaR (bottom pannels).

Table 3 AIC value for each statistical model at different time of the day

Hour ES ARIMA ARMA-GARCH ARMAX-GARCH

h : 3 : 00 2,080.565 1,836.58 15.418 15.405
h : 10 : 00 2,171.46 1,914.24 16.147 16.417
h : 18 : 00 2,219.794 1,955.092 16.486 16.462
h : 22 : 00 2,466.305 1,917.174 15.833 15.837

and ARIMA model, Figure� (b); grey bounds represent the % and � % prediction in-

terval. The bottom panel instead is concerned with the two best performing model, that is

the ARMA-GARCH model, Figure� (c), and the ARMAX-GARCH model, Figure� (d); the

yellow bound in the bottom panel represents the �% prediction interval. From Figure�
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Figure 5 Next days predicted values.

it can be seen how the fact that the models have di�erent goodness of “t implies that the

forecast for next days energy load is di�erent. In fact both ES and ARIMA models have

almost constant forecasted values, whereas the ARMA-GARCH and ARMAX-GARCH

models seems to be more sensitive to oscillations in the energy load imbalance.

Eventually, in Table	 , we show the performances of each of the used methods. The

evaluation has been obtained according to the following criterion: we “x a time window

and we “t all the models, then we check the volatility of the times series to decide the

best threshold, using it to predict the next day imbalance. Then, if the forecasted value is

above the threshold in absolute value, we enter the market. Afterwards, we check with

the actual datum if the predicted imbalance sign is correct, and we shift the time se-
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Table 4 Different methods: overall performance

Right Wrong Not played Overall played Overall right

ES 106 57 246 39.8% 65%
ARIMA 28 25 356 13% 52.8%
ARMA-GARCH 63 44 302 26% 58.8%
ARMAX-GARCH 95 44 270 34% 68.3%

ries to repeat the procedure. As a result, Table	 shows in the left part the number of
times we have entered the market, along with number of times we would have guessed the
right, resp. wrong, imbalance sign. Latter results have been obtained using a “xed time
window of ��� days and still considering the daily times series ath : �	 : ��. The right
hand side of Table	 , reports the overall performance reached by each method over the
whole �� days composing our global data set, considering all the associated daily time
series.

Table	 shows on one side the expected results, while on the other it highlights some pe-
culiar features. In fact, as expected from results reported in Section	 , theARIMA model
is poorly performing, being indeed the worst when dealing with the daily time series as
well as considering the overall performance. Viceversa, again as we expect, the ARMA-
GARCH model performs rather well, with a slight improvement when one also considers
the exogenous variables. What turns to be an unexpected result concerns the ES model
performance, since, according to the AIC criterion, see Table� , it is by far the worst per-
forming one. Nevertheless, if one addresses the problem of forecasting it can be seen that
the ES model outperforms the ARMA-GARCH model without exogenous variables, be-
ing also, even if by a few percentage, better than the ARMA-GARCH with exogenous
variables. In particular, it appears that the ES model and the ARMAX-GARCH model
perform similarly in predicting the next day sign, being the main di�erence among the
two represented by the number of times one enters the market which is greater for the ES,
most probably because it overestimates the next day outcome, leading to a higher number
of plays.

5 Conclusion and further developments
The present work constitutes a “rst step towards the solution of the highly di�cult task
of next day energy imbalanceforecast. Such an ambitious goal is a�ected by several issues
due to many di�erent reasons, such, e.g., the di�culty to “ndstatistically gooddata, which
means that time series are rather often dirtied by regulatory changes, exogenous noises,
sensors faults, etc. Besides, a rather important issue, which is typically not considered,
will play a fundamental role in the next future, namely the one concerning the problem
of optimal allocation/transportation of energy resources/products, a particularly di�cult
task that is intrinsically linked to the solution of stochastic optimal problems stated on
networks, and whose solution has been the subject of an increasing number of researches
during recent years, not only within the energy market framework, see, e.g., [� , �� …�� ] and
references therein.

Moreover, di�erent factors can a�ect energy loads, and we have considered just the day
of the week and temperature. Even if the latter appears, from standard literature, to be
the most relevant, nevertheless recent studies have shown that also di�erent factors could
play a crucial role, as for the case of renewable energies. In particular, considering renew-
able energies lead to at least two non-trivial problems: exact values for such an exogenous



Di Persio et al. Journal of Mathematics in Industry  (2017) 7:5 Page 15 of 15

parameter are not always available, moreover the exact value of itsnext dayproduction is
rather tricky to be predicted with enough accuracy. Previous reasons suggest a very care-
ful and detailed study, that goes beyond the aims of the present work, but whose results
will be of great relevance since the production of renewable energy plays a fundamental
role in the zonal unbalance, that is why we will address this key task in a future work. The
second being how to chose the most relevant renewable energy with respect to its impact
on energy loads, since the e�ect of di�erent renewable energies may vary a lot from region
to region.

We outline that the latter point cannot be neglected in order to develop a solid method
to predict future energy loads, indeed such a subject will be the main focus of our future
works. Last but not least, we would like to underline that the most of the computational
part which has been developed so far with respect to the type of problems we have analysed
in the present paper, is mainly based on Monte Carlo type techniques. Such a type of
numerical approach is particularly ine�ective for our purposes, because of its slow rate of
convergence and poor accuracy, at least compared to more sophisticated methods as the
ones based on the Polynomial Chaos Expansion approach, see, e.g., [�	 ] and references
therein.

Competing interests
The authors declares that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy. 2Befree s.r.l., Via
Cappello, 12, San Pietro in Gu (PD), 35010, Italy . 3Department of Mathematics, University of Trento, Via Sommarive, 14,
Trento, 38123, Italy.

Acknowledgements
The authors gratefully acknowledge BeFree s.r.l. for financial support and for providing data.

Received: 2 August 2016 Accepted: 9 February 2017

References
1. Di Persio L, Perin I. An ambit stochastic approach to pricing electricity forward contracts: the case of the German

energy market. J Probab Stat. 2015;2015:626020.
2. Di Persio L, Frigo M. Gibbs sampling approach to regime switching analysis of financial time series. J Comput Appl

Math. 2016;300:43-55.
3. Marinelli C, Di Persio L, Ziglio G. Approximation and convergence of solutions to semilinear stochastic evolution

equations with jumps. J Funct Anal. 2013;264(12):2784-816.
4. Aïd R. Electricity derivatives. Berlin: Springer; 2015.
5. Cordoni F, Di Persio L. Backward stochastic differential equations approach to hedging, option pricing, and insurance

problems. Int J Stoch Anal. 2014;2014:152389.
6. Cordoni F, Di Persio L. Invariant measure for the Vasicek interest rate model in the Heath-Jarrow-Morton-Musiela

framework. Infin Dimens Anal Quantum Probab Relat Top. 2015;18(3):1550022.
7. Mills TC. Time series techniques for economists. Cambridge: Cambridge University Press; 1991.
8. Weron R. Modeling and forecasting electricity loads and prices: a statistical approach. New York: Wiley; 2007.
9. Gardner E. Exponential smoothing: the state of the art. J Forecast. 1985;4:1-28.
10. Hyndman RJ, Akram M, Archibald BC. The admissible parameter space for exponential smoothing models. Ann Inst

Stat Math. 2008;60(2):407-26.
11. Feinberg E, Genethliou D. Load forecasting. In: Applied mathematics for restructured electric power systems. New

York: Springer; 2005. p. 269-85.
12. Ghelardoni L, Ghio A, Anguita D. Energy load forecasting using empirical mode decomposition and support vector

regression. IEEE Trans Smart Grid. 2013;4(1):549-56.
13. Liu K, et al. Comparison of very short-term load forecasting techniques. IEEE Trans Power Syst. 1996;11(2):877-82.
14. Bonollo M, Di Persio L, Pellegrini G. Polynomial chaos expansion approach to interest rate models. J Probab Stat.

2015;2015:369053.
15. Barbu V, Cordoni F, Di Persio L. Optimal control of stochastic FitzHugh-Nagumo equation. Int J Control.

2016;89(4):746-56.
16. Benazzoli C, Di Persio L. Default contagion in financial networks. Int J Math Comput Simul. 2016;10:112-7.
17. Di Persio L, Ziglio G. Gaussian estimates on networks with applications to optimal control. Netw Heterog Media.

2011;6(2):279-96.


